Vascular remodeling protects against ventilator-induced lung injury in the in vivo rat.
نویسندگان
چکیده
BACKGROUND The role of the pulmonary vasculature in the pathogenesis of ventilator-induced lung injury is not well established. In this study, the authors investigated the effect of vascular remodeling due to chronic pulmonary hypertension on susceptibility to ventilator-induced lung injury. The authors hypothesized that the enhanced vascular tensile strength associated with pulmonary vascular remodeling would protect against ventilator-induced lung injury. METHODS Chronic pulmonary arterial hypertension was induced in rats by exposure to hypoxia for 28 days and was confirmed by demonstration of right ventricular hypertrophy. Normotensive and hypertensive groups of rats (as well as a group in which pulmonary hypertension was acutely reversed with a Rho-kinase inhibitor, Y-27632) were exposed to injurious ventilation (respiratory rate 30 min, 30/0 cm H2O) for 90 min. Lung injury was assessed by change in lung mechanics, oxygenation, edema development, and cytokine levels. Electron microscopy was used to examine vascular structure in additional animals. RESULTS Injurious ventilation caused significant lung injury (lung compliance, oxygenation, pulmonary edema) in the normotensive controls, but not in the presence of pulmonary hypertension; acute reversal of pulmonary hypertension did not alter the lessened susceptibility to ventilator-induced lung injury. Electron microscopy demonstrated capillary endothelial and epithelial breaks in injuriously ventilated normotensive controls that were not seen with pulmonary hypertension, whether or not the pulmonary hypertension was acutely reversed. CONCLUSIONS Vascular remodeling induced by chronic pulmonary hypertension confers protection against the effects of injurious mechanical ventilation in vivo by a mechanism that may involve structural alterations rather than increased pulmonary artery pressure.
منابع مشابه
p-Coumaric acid protects cardiac function against lipopolysaccharide-induced acute lung injury by attenuation of oxidative stress
Objective(s): Acute lung injury (ALI) has a high mortality rate and is characterized by damage to pulmonary system giving rise to symptoms such as histological alteration, lung tissue edema and production of proinflammatory cytokine. p-Coumaric acid (p-CA), as a phenolic compound, that is found in many types of fruits and vegetables has been reported to exhibit a thera...
متن کاملNitric oxide inhalation decreases pulmonary artery remodeling in the injured lungs of rat pups.
Vascular injury causes the muscularization of peripheral pulmonary arteries, which is more pronounced in the infant than in the adult lung. Although inhaled NO gas attenuates pulmonary artery remodeling in hypoxic rats, whether or not it protects the lung by mitigating vasoconstriction is unknown. This investigation tested whether inhaled NO decreases the muscularization of injured pulmonary ar...
متن کاملAsiaticoside attenuates hyperoxia-induced lung injury in vitro andin vivo
Objective(s): Asiaticoside (AS) displays anti-inflammation, and anti-apoptosis effect, but the role of AS in hyperoxia-induced lung injury (HILI) treatment is undefined. Therefore, the aim of this study was to investigate the effects of AS on HILI on premature rats and alveolar type II (AEC II) cells.Materials and Methods: Sprague-Dawley...
متن کاملPentoxifylline Protects the Rat Liver Against Fibrosis and Apoptosis Induced by Acute Administration of 3,4-Methylenedioxymethamphetamine (MDMA or Ecstasy)
Objective(s): 3,4-Methylenedioxymethamphetamine (MDMA) is one of the most popular drugs of abuse in the world with hallucinogenic properties that has been shown to induce apoptosis in liver cells. The present study aimed to investigate the effects of pentoxifylline (PTX) on liver damage induced by acute administration of MDMA in Wistar rat. Materials and Methods: Animals were administered wit...
متن کاملSodium nitrite mitigates ventilator-induced lung injury in rats.
BACKGROUND Nitrite (NO2) is a physiologic source of nitric oxide and protects against ischemia-reperfusion injuries. We hypothesized that nitrite would be protective in a rat model of ventilator-induced lung injury and sought to determine if nitrite protection is mediated by enzymic catalytic reduction to nitric oxide. METHODS Rats were anesthetized and mechanically ventilated. Group 1 had lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Anesthesiology
دوره 108 6 شماره
صفحات -
تاریخ انتشار 2008